Lower bounds for adaptive locally decodable codes
نویسندگان
چکیده
An error-correcting code is said to be locally decodable if a randomized algorithm can recover any single bit of a message by reading only a small number of symbols of a possibly corrupted encoding of the message. Katz and Trevisan (On the efficiency of local decoding procedures for error correcting codes, STOC 2000, 80–86) showed that any such code C : {0, 1}n → Σ with a decoding algorithm that makes at most q probes must satisfy m = Ω((n/ log |Σ|)q/(q−1)). They assumed that the decoding algorithm is non-adaptive, and left open the question of proving similar bounds for adaptive decoders. We show m = Ω((n/ log |Σ|)) without assuming that the decoder is non-adaptive.
منابع مشابه
Exponential Lower Bound for 2-Query Locally Decodable Codes
We prove exponential lower bounds on the length of 2-query locally decodable codes. Goldreich et al. recently proved such bounds for the special case of linear locally decodable codes. Our proof shows that a 2-query locally decodable code can be decoded with only 1 quantum query, and then proves an exponential lower bound for such 1-query locally quantum-decodable codes. We also exhibit q-query...
متن کاملImproved Lower Bounds for Locally Decodable Codes and Private Information Retrieval
We prove new lower bounds for locally decodable codes and private information retrieval. We show that a 2-query LDC encoding n-bit strings over an l-bit alphabet, where the decoder only uses b bits of each queried position of the codeword, needs code length
متن کاملTowards Lower Bounds on Locally Testable Codes
1 Abbreviations and Notations 3 1 General Introduction 4 1.1 PCP theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Property Testing . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Locally Testable Codes . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Random locally testable codes . . . . . . . . . . . . . 6 1.3.2 Algebraic Construction of LTCs . . . . . . . . . . ....
متن کاملLower Bounds for Approximate LDCs
We study an approximate version of q-query LDCs (Locally Decodable Codes) over the real numbers and prove lower bounds on the encoding length of such codes. A q-query (α, δ)approximate LDC is a set V of n points in R so that, for each i ∈ [d] there are Ω(δn) disjoint q-tuples (u1, . . . ,uq) in V so that span(u1, . . . ,uq) contains a unit vector whose i’th coordinate is at least α. We prove ex...
متن کاملLower Bounds for Approximate LDC
We study an approximate version of q-query LDCs (Locally Decodable Codes) over the real numbers and prove lower bounds on the encoding length of such codes. A q-query (α, δ)approximate LDC is a set V of n points in R so that, for each i ∈ [d] there are Ω(δn) disjoint q-tuples (u1, . . . ,uq) in V so that span(u1, . . . ,uq) contains a unit vector whose i’th coordinate is at least α. We prove ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Random Struct. Algorithms
دوره 27 شماره
صفحات -
تاریخ انتشار 2005